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The solation to two axisymmetric contact problems concerned with the steady-state vi-
brations of an elastic sphere are derived.

The firat of these is related to the problem of the axisymmetric deformation of an elastic
sphere, when the normal displacement u, is given on part of the surface of the sphere, and
on the remainder of the surface the value of the normal stress o, is known. For simplicity
it is assumed that there is no tangential stress 7, on the surface of the body.

In the second problem the torsional vibration of an elastic sphere is considered, when
the sphere is twisted by means of the rotation of a rigid circular stamp, fixed on a portion
of the surface of the sphere. The corresponding statical problems were considered in [1, 2].

The solution to the problem is sought in the form of a series of Legendre polynomials.
The determination of the constants of integration is reduced to the solution of an infinite
system of linear algebraic equations. It is proved that the systems obtained are quasi~
completely regular, while the independent terms of these are a system bounded from above
and tend to zero* with increasing index.

1. Construction of general solutions. We construct first a general solution to the pro-
blem of the steady-state vibrations of an elastic sphere involving axial symmetry. As is
well-known, in a spherical system of coordinates r, 8, ¢ this problem is reduced to

Lame integral equations

* We note that it was not proved that the system obtained for the corresponding statical
problem was regular. Therefore the proof, which is developed in Section 4, is completely
related also to the systems considered in the papers[1, 2].
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Here A and g are Lamé coefficients, and p is the density of the material.
The solution to the system (1.1) is taken in the form of a series
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Here Pk(f) is the Legendre polynomial, Pk‘(f) is the associated Legendre function, and
fo (n, fk (r), Py (r) and l//k (r) are unknown functions to be determined.

Putting expressions (1.2) and (1.3) in system (1.1) for the determination of the func-
tions f, (1), f, (), ¢, (r) and ;. (r) we obtain differential equations, the solutions of

which for the solid sphere we take in the form
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Here the constants of integration A, Ak' Bk and Dk are determined from the boundary

conditions.

Making use of (1.3) and (1.4) and the equation of the generalized Hooke's law, we get

an expression for the determination of stresses
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where we introduce the notation
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2. Axisymmetric problem for a sphere. We consider the problem of the axially sym-
metric deformation of an elastic sphere, when there is no normal displacement on a portion

of the boundary of the sphere, and on the other portion the dynamic normal stress is given.

It is assumed that there are no tangential stresses on the surface of the sphere. (figure).

The boundary conditions for the given problem have the form

u, (R, 8,8) =0 ©0<0<a), o, (R, 6,1 =/f(®) e (18

(2.1)
Te (R, 0,7) =0 (0O m)
To satisfy the last condition of (2.1) we take
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and from the first two conditions (2.1) the following ‘dual’ series which contain Legendre

polynomials are obtained for the determination of the unknown coefficients 4,
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Here
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78] @8 Making use of asymptotic formulas for Bessel func-

tions, it is easy to show that for a small value of

aR (@R < 4.5V p (A + 2u)) the quantity a, for

large index remains bounded and does not change sign.
For this sequence j , beginning with some number, tends
7 to its limit (a,k +=[b? (42 ~ 1)}~ !ymonotonically.

But axisymmetric formulas for Bessel functions
Jr1y, (aR) for small argument remain valid for arbi-
trary finite values of aR if & > ky > aR. Hence it
follows that if aR is not a root of the function Ek(aR),
z then our assertion of the behavior of the number a, is

valid for any finite value of aR, starting with the number
ko. This property we allow to apply to the result of paper [1] and the solution of the dual
series (2.3) is reduced to the solution of a linear system of algebraic equations

Xn= D anXx + bn (2.6)
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We now investigate the behavior of the normal stress o,, acting on the stamp near its
edge.
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Since 0, is expressed by means of a series (1.5), we compute the boundary values for
this series for r= R, and 8+ a - 0.

Making use of the equations
(2.8)
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it is easy to show that the boundary value of the normal stress ar(R, 6,t)for+a -0
has the form
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and the numbers y, are coefficients of the expansion
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3. Torsion of an elastic sphere. In an analogous fashion we may solve the problem of
the torsional oscillations of a continuous elastic sphere when it is twisted by means of
the rotation of a rigid round stamp, curved with a part of the surface of the sphere.

It is conjectured that exterior to the stamp the surface of the sphere is free from

external tangential stresses.
The boundary conditions for this problem have the form
uy (R, 8, 1) = xR sin 06" (0<<0<a), 7,,(R0,)=0 (@<6<m) (3.1
where x is the maximum angle of twist of the stamp.
Satisfying conditions (3.1) from (1.3) and (1.5), we obtain for the determination of the
unknown coefficients D, the dual series for the associated Legendre polynomials
[ o]
Y} Dy, @R) Pl (cos 6) = xR™sin 8 (0 < 6 < a)
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o0 (3.2)
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Taking into account the equation [3]

d
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integrating equation (3.2), and changing to the new variable £ = cos 6, we obtain
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We assume that the number aR is not a root of the function J,, (aR) and making use
of the results of the paper [1], the determination of the unknown coefficients X k is reduced

the solution of an infinite system of linear algebraic equations
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It is obvious from (3.2) and (3.3) that one of the constant values, C, or C,, may be
given arbitrarily (for example C, = 0) and the other constant is determined from the condi-
tion of boundedness of the sum for tangential stresses 7, ;, acting under the stamp. Making
use of equations (1.5), (1.6), (2.8), (3.5) and (3.6), this condition may be written in the form

©0
apX
» #{‘,2 cos (k + Y3) a + #R" cos 3/,0 — (C; — 2C,) cos Yya = 0

Pusrs 3.7)

The unknown coefficients Xn in relationship (3.7) are determined from an infinite

system of linear equations (3.5) and are expressed in terms of the constants (C, — 2C,).

Substituting from the results of (3.5) the value of the unknowns in (3.7) and solying
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the relationship obtained with respect to (C; — 2C;), we obtain its value.

4. Investigation of infinite systems. In the infinite system (2.6) and (3.5) we intro-

duce the new notation

Y = ax X (4.1)

Then these systems assume the form

3 .2
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k=0
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We shall prove that the system (4.2) is quasi-completely regular. For this we compute

the sum of the moduli of the coefficients for the unknowns
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But since for 1> 2, ¢ (n) < In n holds, the expression for S, may be written in the

form

la, Iryl 5 .
S < |y + 0 ()]

where

1=3, 8=a+5C—P(®) (C = 0.577216 is Euler’s constant)

If the number a, is finite, i.e., aR is a root of the function Ek (x) (in the first pro-
blem) or of the function Jy.y, () (in the second problem), then for increasing n the value

Sn tends to zero

lim §, =0

and this means that the value, beginning with some number, will have

Sn<ll—e for n > n,

i.e., the system (4.2) is quasi-completely regular.
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It is easily seen that the free term of system (4.2) is bounded from above and as

n - o tends to zero.

If, however, one of the numbers a’n becomes infinite (see footnote on p. 620) (an Rl ), then
it is necessary in system (2.6) and (3.5) to introduce new unknowns in the following

manner:

Zy = Xi for n=£ n, Z.,;l = (Iﬂan‘

The infinite system for Zk is also quasi-completely regular. It is easy to show that

two of the numbers 0, may not simultaneously tend to infinity.

We note that from the solution of the problem considered here in the special case
when w + 0 (a + 0), a solution is obtained corresponding to the statical case [1,2], where

incidentally, the regularity of the system obtained was not demonstrated.

BIBLIOGRAPHY

1. Babloian, A.A., Reshenie nekotorykh parnykh riadov. (Solution of certain dual series).
Dokl. AN Arm. SSR, 1964, Vol. 39, No. 3.

2. Arutiunian, N. Kh., Abramian, B.L., O vdavlivanii zhestkogo shtampa v upruguniu sferu.
(The indentation of a rigid stamp in an elastic sphere). PMM Vol. 28, No. 6, pp. 1101-
1105.

3. Lebedev, N.N., Spetsial’nye funktsii i ikh prilozheniia. (Special functions and their
applications). Fizmatgiz, 1963.

Translated by L.M.K.



