TWO DYNAMICAL CONTACT PROBLEMS FOR AN ELASTIC SPHERE
 (O DVUKH DINAMICHESKIKH KONTAKTNYKH ZADACHAKH DLIA UPRUGOI SFERY)

PMM Vol. 29, No. 3, 1965, pp. 526-531

N. KH. ARUTIUNIAN and A.A. BABLOIAN
(Erevan)

(Received January 29, 1965)

The solation to two axisymmetric contact problems concerned with the steadysatate vibrations of an elastic sphere are derived.

The first of these is related to the problem of the axisymmetric deformation of an elastic sphere, when the normal displacement u_{r} is given on part of the surface of the sphere, and on the remainder of the aurface the value of the normal stress σ_{r} is known. For simplicity It is assumed that there is no tangential stress $\tau^{\prime} \theta$ on the surface of the body.

In the second problem the torsional vibration of an elastic sphere is considered, when the sphere is twisted by means of the rotation of a rigid circular stamp, fixed on a portion of the surface of the sphere. The corresponding statical problems were considered in [1, 2].

The solution to the problem is sought in the form of a series of Legendre polynomials. The determination of the constants of integration is reduced to the solution of an infinite system of linear algebraic equations. It is proved that the systems obtained are quasicompletely regular, while the independent terms of these are a system bounded from above and tend to zero* with increasing index.

1. Construction of general solutions. We construct first a general solution to the problem of the steady-atate vibrations of an elastic sphere involving axial symmetry. As is well-known, in a spherical system of coordinates r, θ, ϕ this problem is reduced to Lamé integral equations

[^0]\[

$$
\begin{gather*}
\frac{\lambda+2 \mu}{\mu} \frac{\partial \triangle}{\partial r}-\frac{2}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\omega_{\varphi} \sin \theta\right)=\frac{\rho}{\mu} \frac{\partial^{2} u_{r j}}{\partial t^{2}} \\
\frac{\lambda+2 \mu}{\mu r} \frac{\partial \triangle}{\partial \theta}+\frac{2}{r} \frac{\partial}{\partial r}\left(r \omega_{\varphi}\right)=\frac{\rho}{\mu} \frac{\partial^{2} u_{\theta}}{\partial t^{2}}, \quad-\frac{\partial\left(r \omega_{\theta}\right)}{\partial r}+\frac{\partial \omega_{r}}{\partial \theta}=\frac{\rho r}{2 \mu} \frac{\partial^{2} u_{\varphi}}{\partial t^{2}} \tag{1.1}
\end{gather*}
$$
\]

where

$$
\Delta=\frac{1}{r^{2} \sin \theta}\left[\frac{\partial}{\partial r}\left(r^{2} u_{r} \sin \theta\right)+\frac{\partial}{\partial \theta}\left(r u_{\theta} \sin \theta\right)\right]
$$

$$
\begin{equation*}
2 \omega_{r}=\frac{1}{r \sin \theta} \frac{\partial\left(u_{\varphi} \sin \theta\right)}{\partial \theta}, \quad 2 \omega_{\theta}=-\frac{\partial\left(r u_{\varphi}\right)}{r \partial r}, \quad 2 \omega_{\varphi}=\frac{1}{r} \frac{\partial\left(r u_{\theta}\right)}{\partial r}-\frac{1}{r} \frac{\partial u_{r}}{\partial \theta} \tag{1.2}
\end{equation*}
$$

Here λ and μ are Lamé coefficients, and ρ is the density of the material.
The solution to the system (1.1) is taken in the form of a series

$$
\begin{gather*}
u_{r}(r, \theta, t)=e^{i \omega t}\left[f_{0}(r)+\sum_{k=1}^{\infty} f_{k}(r) P_{k}(\cos \theta)\right] \\
u_{\theta}(r, \theta, t)=e^{i \omega t} \sum_{k=1}^{\infty} \varphi_{k}(r) P_{k}^{\prime}(\cos \theta) \sin \theta \tag{1.3}\\
u_{\varphi}(r, \theta, t)=e^{i \omega t} \sum_{k=1}^{\infty} \psi_{k}(r) P_{k}^{1}(\cos \theta)
\end{gather*}
$$

Here $P_{k}(\xi)$ is the Legendre polynomial, $P_{k}{ }^{1}(\xi)$ is the associated Legendre fanction, and $f_{0}(r), f_{k}(r), \varphi_{k}(r)$ and $\psi_{k}(r)$ are unknown functions to be deternined.

Putting expressions (1.2) and (1.3) in system (1.1) for the determination of the functions $f_{0}(r), f_{k}(r), \varphi_{k}(r)$ and $\psi_{k}(r)$ we obtain differential equations, the solations of which for the solid sphere we take in the form

$$
\begin{gather*}
f_{0}(r)=A_{0} r^{-1 / 2} J_{s^{3}, 2}\left(\frac{a r}{b}\right) \quad\left(a^{2}=\frac{\rho \omega^{2}}{\mu}, b^{2}=\frac{\lambda+2 \mu}{\mu}\right) \\
\left.f_{k}(r)=-A_{k} \frac{b^{2}}{a^{2}} \frac{d}{d r}\left[r^{-1 / 2} J_{k+1 / 2}\left(\frac{a r}{b}\right)\right]+B_{k} \frac{k(k+1) \cdot r^{3} \cdot J_{k+1 / ;}(a r)}{a^{2}}\right) \tag{1.4}\\
\varphi_{k}(r)=A_{k} \frac{b^{2}}{a^{2}} r^{-3 / 2} J_{k+1 / 2}\left(\frac{a r}{b}\right)-B_{k} \frac{1}{a^{2} r} \frac{d}{d r}\left[r^{1 / 2} J_{k+1,2}(a r)\right] \\
\Psi_{k}(r)=D_{k} r^{-1 / 2 / 2} J_{k+1 / 2}(a r)
\end{gather*}
$$

Here the constants of intcgration A_{0}, A_{k}, B_{k} and D_{k} are determined from the boundary conditions.

Making use of (1.3) and (1.4) and the equation of the generalized Hooke's law, we get an expression for the determination of stresses

$$
\begin{align*}
\sigma_{r}=e^{i \omega t} \sum_{k=0}^{\infty} \sigma_{r}{ }^{(k)} p_{k}(\cos \theta), & \tau_{r \theta}=e^{i \omega t} \sum_{k-1}^{\infty} \tau_{r \theta}^{(k)} p_{k}^{\prime}(\cos \theta) \sin \theta \tag{1.5}\\
\tau_{r \varphi}=e^{i \omega t} \sum_{k=1}^{\infty} \tau_{r \varphi}^{(k)} p_{k}(\cos \theta), & \tau_{\theta \tau}=e^{i \omega i} \sum_{r=2}^{\infty} \tau_{\theta_{\varphi}}^{(k)} p_{k}^{\prime \prime}(\cos \theta) \sin ^{2} \theta
\end{align*}
$$

where we introduce the notation

$$
\begin{gather*}
\sigma_{r}^{(0)}=2 \mu A_{0} r^{-3 / 2}\left[\frac{a b}{2} r J_{1 / 2}\left(\frac{a r}{b}\right)-2 J_{3 / 2}\left(\frac{a r}{b}\right)\right] \\
\sigma_{r}^{(k)}=2 \mu r^{-b / 2}\left\{A_{k} \frac{b^{2}}{a^{2}}\left[\frac{2 a r}{b} J_{k-1 / 2}\left(\frac{a r}{b}\right)+\left[\frac{a^{2} r^{2}}{2}+(k+1)(k+2)\right] J_{k+1 / 2}\left(\frac{a r}{b}\right)\right]+\right. \\
\left.+B_{k} \frac{k(k+1)}{a^{2}}\left[a r J_{k-1 / 2}(a r)-(k+2) J_{k+1 / 2}(a r)\right]\right\} \\
\tau_{r \theta}^{(k)}=\mu_{r^{-5 / 2}}\left\{A_{k} \frac{2 b^{2}}{a^{2}}\left[\frac{a r}{b} J_{k-1 / 2}\left(\frac{a r}{b}\right)-(k+2) J_{k+1,2}\left(\frac{a r}{b}\right)\right]+\right. \tag{1.6}\\
\left.+\frac{B_{k}}{a^{2}}\left[2 a r J_{k-1,2}(a r)+\left[a^{2} r^{2}-2 k(k+2)\right] J_{k+1 / 2}(a r)\right]\right\} \\
\tau_{r \varphi}^{(k)}=\mu D_{k} r^{-3 / 2}\left[(k-1) J_{k+1 / 2}(a r)-J_{k+3 / 2}(a r)\right] \\
\tau_{\theta \varphi}^{(k)}=\mu D_{k} r^{-3 / 2} J_{k+1 / 2}(a r)
\end{gather*}
$$

2. Axisymmetric problem for a sphere. We consider the problem of the axially symmetric deformation of an elastic sphere, when there is no normal displacement on a portion of the boundary of the aphere, and on the other portion the dynamic normal stress is given. It is assumed that there are no tangential stresses on the surface of the sphere. (figure).

The boundary conditions for the given problem have the form

$$
\begin{gather*}
u_{\boldsymbol{r}}(R, \theta, t)=0 \quad(0 \leqslant \theta<\alpha), \quad \sigma_{r}(R, \theta, t)=f(\theta) e^{i \omega t} \quad(\alpha<\theta \leqslant \pi) \\
\tau_{r \theta}(R, \theta, t)=0 \quad(0 \leqslant \theta \leqslant \pi) \tag{2.1}
\end{gather*}
$$

To satisfy the last condition of (2.1) we take

$$
\begin{equation*}
B_{k}=-2 b^{2} A_{k} \frac{a R / b J_{k-1 / 2}(a R / b)-(k+2) J_{k+1 / 2}(a R / b)}{2 a R J_{k-1 / 2}(a R)+\left[a^{2} R^{2}-2 k(k+2)\right] J_{k+1 / 2}(a R)} \tag{2.2}
\end{equation*}
$$

and from the first two conditions (2.1) the following 'dual' series which contain Legendre polynomials are obtained for the determination of the unknown coefficients A_{k}

$$
\begin{align*}
\sum_{k=0}^{\infty} X_{k} p_{k}(\cos \theta)=0 & (0 \leqslant \theta<\alpha) \\
\sum_{k=0}^{\infty}\left(k+1 / 2+\alpha_{k}\right) X_{k} p_{k}(\cos \theta) & =\frac{R^{8 / 2} b^{2}}{2 \mu\left(b^{2}-1\right)} f(\theta) \quad(\alpha<\theta \leqslant \pi) \tag{2.3}
\end{align*}
$$

Here

$$
\begin{gather*}
X_{k}=\frac{b R E_{k}}{a G_{k}} A_{k}, \quad \alpha_{k}=\frac{b^{2} F_{k}-(k+1 / 2)\left(b^{2}-1\right) E_{k}}{\left(b^{2}-1\right) E_{k}} \tag{2.4}\\
E_{k}=b(k+1) J_{k+1 / 2}(a R / b)\left[2 J_{k-1 / 2}(a R)+a R J_{k+1 / 2}(a R)\right]- \\
-J_{k-1 / 2}(a R / b)\left[2 a R J_{k-1 / 2}(a R)+\left(a^{2} R^{2}-2 k\right) J_{k+1 / 2}(a R)\right] \\
F_{k}=-2(k-1)(k+2) a R J_{k-1 / 2}(a R) J_{k-1 / 2}(a R / b)+ \\
+2 b\left[1 /{ }^{2} a^{2} R^{2}+\left(k^{2}-1\right)(k+2)\right] J_{k-1 / 2}(a R) J_{k+1 / 2}(a R / b)+ \tag{2.5}\\
+2\left[a^{2} R^{2}+k(k-1)(k+2)\right] J_{k+1 / 2}(a R) J_{k-1 / 2}(a R / b)+ \\
+a b R\left[1 / 2 a^{2} R^{2}-(2 k+1)(k+2)\right] J_{k+1 / 2}(a R) J_{k+1 / 2}(a R / b) \\
G_{k}=2 a R J_{k-1 / 2}(a R)+\left[a^{2} R^{2}-2 k(k+2)\right] J_{k+1 / 2}(a R)
\end{gather*}
$$

Making use of asymptotic formalas for Bessel functions, it is easy to show that for a small value of $a R(\omega R<4.5 \sqrt{\rho(\lambda+2 \mu)})$ the quantity a_{k} for large index remains bounded and does not change sign. For this sequence a_{k}, beginning with some number, tends to its limit $\left(a_{k} \rightarrow-\left[b^{2}\left(b^{2}-1\right)\right]^{-1}\right)$ monotonically.

But axisymmetric formulas for Bessel functions $J_{k \pm 1 / 2}(a R)$ for small argument remain valid for arbitrary finite values of $a R$ if $k \geqslant k_{0} \gg a R$. Hence it follows that if $a R$ is not a root of the function $E_{k}(a R)$, then our assertion of the behavior of the number a_{k} is valid for any finite value of $a R$, starting with the number k_{0}. This property we allow to apply to the result of paper [1] and the solution of the dual series (2.3) is reduced to the solution of a linear system of algebraic equations

$$
\begin{gather*}
X_{n}=\sum_{k=0}^{\infty} a_{n k} X_{k}+b_{n} \tag{2.6}\\
a_{n k}=\frac{\alpha_{k}}{\pi(k+1 / 2)}\left[\frac{\sin (n-k) \alpha}{n-k}+\frac{\sin (n+k+1) \alpha}{n+k+1}\right] \\
b_{n}=\frac{\sqrt{2}}{\pi} \int_{\alpha}^{\pi} \cos (n+1 / 2) \varphi d \varphi \int_{-1}^{\cos \infty} \frac{f_{1}(\xi) d \xi}{(\cos \varphi-\xi)^{1 / 2}} \tag{2.7}\\
f_{1}(\xi)=\frac{R^{3 / 2} b^{2}}{2 \mu\left(b^{2}-1\right)} f(\theta) \quad \text { for } \quad \xi=\cos \theta
\end{gather*}
$$

We now investigate the behavior of the normal stress σ_{r}, acting on the stamp near its edge.

Since σ_{p} in expressed by means of a series (1.5), we compute the boundary values for this series for $r=R$, and $\theta \rightarrow a-0$.

Making use of the equations
$\sum_{n=0}^{\infty} p_{n}(\cos \varphi) \cos (n-k) \beta= \begin{cases}{[2(\cos \beta-\cos \varphi)]^{-1 / 2} \cos (k+1 / 2) \beta} & \text { for }(0<\beta<\varphi) \\ {[2(\cos \varphi-\cos \beta)]^{-1 / 2} \sin (k+1 / 2) \beta} & \text { for }(0<\varphi<\beta)\end{cases}$ $\sum_{n=0}^{\infty} P_{n}(\cos \varphi) \sin (n-k) \beta=\left\{\begin{array}{r}-[2(\cos \beta-\cos \varphi)]^{-1 / 2} \sin (k+1 / 2) \beta \text { for }(0<\beta<\varphi) \\ {[2(\cos \varphi-\cos \beta)]^{-1 / 2} \cos (k+1 / 2) \beta \text { for }(0<\varphi<\beta)}\end{array}\right.$
it in eacy to show that the boundary value of the normal stress $\sigma_{r}(R, \theta, t)$ for $\theta \rightarrow a-0$ has the form

$$
\begin{equation*}
V_{p}\left[\sigma_{r}(R, \theta, t)\right]=\frac{\sqrt{2} e^{i \omega t} M}{(\cos \theta-\cos \alpha)^{1 / 2}} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\frac{2 \mu\left(b^{3}-1\right)}{R^{1 / 2} b^{8}} \sum_{k=0}^{\infty} \frac{a_{k} X_{k}-\gamma_{k}}{k+1 / 2} \cos (k+1 / 2) \alpha \tag{2.10}
\end{equation*}
$$

and the numbera γ_{k} are coefficients of the expansion

$$
\begin{equation*}
f_{1}(\xi)=\sum_{k=0}^{\infty} \Upsilon_{k} P_{k}(\xi) \tag{2.11}
\end{equation*}
$$

3. Toratom of an elastic sphere. In an analogons fashion we may solve the problem of the toraional oncillatione of a continuons elastic aphere when it is twisted by means of the rotation of a rigid round atamp, curved with a part of the surface of the sphere.

It is conjectured that exterior to the stamp the surface of the sphere is free from external tangential atresses.

The boundary conditions for this problem have the form

$$
\begin{equation*}
\boldsymbol{u}_{\varphi}(\boldsymbol{R}, \boldsymbol{\theta}, t)=x R \sin \theta e^{i \omega t} \quad(0 \leqslant \theta<\alpha), \quad \tau_{r \varphi}(R, \theta, t)=0 \quad(\alpha<\theta \leqslant \pi) \tag{3.1}
\end{equation*}
$$

where κ is the maximum angle of twist of the stamp.
Satiafying conditions (3.1) from (1.3) and (1.5), we obtain for the determination of the unknown coefficients D_{k} the dual series for the associated Legendre polynomials

$$
\begin{gather*}
\sum_{k=1}^{\infty} D_{k} J_{k+1 / 2}(a R) P_{k}^{1}(\cos \theta)=x R^{3 / 2} \sin \theta \quad(0 \leqslant \theta<\alpha) \\
\sum_{k=1}^{\infty} D_{k}\left[(k-1) J_{k+1 / 2}(a R)-a R J_{k+4 / 2}(a R)\right] P_{k}^{1}(\cos \theta)=0 \quad(\alpha<\theta<\pi) \tag{3.2}
\end{gather*}
$$

Taking into account the equation [3]

$$
P_{n}^{1}(\cos \theta)=\frac{d}{d \theta} P_{n}(\cos \theta)
$$

integrating equation (3.2), and changing to the new variable $\xi=\cos \theta$, we obtain

$$
\begin{array}{rlr}
\sum_{k=0}^{\infty} X_{k} P_{k}(\xi) & =-x R^{2 / 2 \xi}+C_{1} & (c<\xi \leqslant 1) \\
\sum_{k=0}^{\infty}(k+1 / 2) X_{k} P_{k}(\xi) & =\sum_{k=0}^{\infty} \alpha_{k} X_{k} P_{k}(\xi)+C_{3} & (-1 \leqslant \xi<c) \tag{3.3}
\end{array}
$$

where we introduce the notation

$$
\begin{equation*}
X_{k}=D_{k} J_{k+1 / 2}(a R), \quad c=\cos \alpha, \quad \alpha_{k}=\frac{3 J_{k+1 / 2}(a R)+2 a R J_{k+2 / 2}(a R)}{2 J_{k+1 / 2}(a R)} \tag{3.4}
\end{equation*}
$$

We assume that the number $a R$ is not a root of the function $J_{k+1 / 2}(a R)$ and making nse of the results of the paper [1], the determination of the unknown coefficients X_{k} is reduced the solution of an infinite system of linear algebraic equations

$$
\begin{equation*}
X_{n}=\sum_{k=0}^{\infty} a_{n k} X_{k}+b_{n} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{align*}
a_{n k}=- & \frac{\alpha_{k}}{\pi(k+1 / 2)}\left[\frac{\sin (k-n) \alpha}{k-n}+\frac{\sin (k+n+1) \alpha}{k+n+1}\right] \\
\pi b_{n}=- & x R^{2 / 2}\left[\frac{\sin (n-1) \alpha}{n-1}+\frac{\sin (n+2) \alpha}{n+2}\right]+ \\
& +\left(C_{1}-2 C_{2}\right)\left[\frac{\sin n \alpha}{n}+\frac{\sin (n+1) \alpha}{n+1}\right]+2 \pi \delta_{n} C_{2} \tag{3.6}\\
& \delta_{n}=0 \quad \text { for } n \geq 1, \quad \delta_{n}=1
\end{align*}
$$

It is obvious from (3.2) and (3.3) that one of the constant values, C_{1} or C_{2}, may be given arbitrarily (for example $C_{2}=0$) and the other constant is determined from the condition of boundedness of the sum for tangential stresses $\tau_{r \phi}$, acting under the stamp. Making use of equations (1.5), (1.6), (2.8), (3.5) and (3.6), this condition may be written in the form

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{a_{k} X_{k}}{k+1 / 2} \cos (k+1 / 2) \alpha+x R^{2 / 2} \cos 3 / 2 \alpha-\left(C_{1}-2 C_{2}\right) \cos 1 / 2 \alpha=0 \tag{3.7}
\end{equation*}
$$

The unknown coefficients X_{n} in relationship (3.7) are determined from an infinite system of linear equations (3.5) and are expressed in terms of the constants ($C_{1}-2 C_{2}$).

Substituting from the results of (3.5) the value of the unknowns in (3.7) and solying
the relationship obtained with respect to $\left(C_{1}-2 C_{2}\right)$, we obtain its value.
4. Investigation of infinite systems. In the infinite system (2.6) and (3.5) we introduce the new notation

$$
\begin{equation*}
Y_{k}=\alpha_{k} X_{k} \tag{4.1}
\end{equation*}
$$

Then these systems assume the form

$$
\begin{equation*}
Y_{n}=\sum_{k=0}^{\infty} A_{n k} Y_{k}+\beta_{n} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}= \pm \frac{\alpha_{n}}{\pi(k+1 / 2)}\left[\frac{\sin (k-n) \alpha}{k-n}+\frac{\sin (k+n+1)^{\alpha}}{k+n+1}\right], \beta_{n}=\alpha_{n} b_{n} \tag{4.3}
\end{equation*}
$$

We shall prove that the system (4.2) is quasi-completely regular. For this we compute the sum of the moduli of the coefficients for the unknowns

$$
\begin{aligned}
& S_{n}=\sum_{k=0}^{\infty}\left|A_{n k}\right|=\frac{\left|\alpha_{n}\right|}{\pi} \sum_{k=0}^{\infty} \frac{1}{k+1 / 2}\left|\frac{\sin (k-n) \alpha}{k-n}+\frac{\sin (k+n+1) \alpha}{k+n+1}\right|< \\
< & \frac{\left|\alpha_{n}\right|}{\pi(n+1 / 2)}\left(\alpha+\frac{1}{2 n+1}\right)+\frac{\left|\alpha_{n}\right|}{\pi} \sum_{\substack{k=0 \\
k \neq n}}^{\infty}\left(\frac{1}{|k-n|}+\frac{1}{k+n+1}\right)(k+1 / 2)^{-1}= \\
= & \frac{\left|\alpha_{n}\right|}{\pi(n+1 / 2)}\left[2 \psi(n+1 / 2)+\psi(n)+2 C+\frac{2}{n+1 / 2}-\psi(3 / 2)\right]+\frac{\left|\alpha_{n}\right| \alpha}{\pi(n+1 / 2)}
\end{aligned}
$$

But since for $n \geqslant 2, \psi(n) \leqslant \ln n$ holds, the expression for S_{n} may be written in the form

$$
S_{n}<\frac{\left|\alpha_{n}\right|}{\pi}\left[\frac{\gamma \ln n+\delta}{n+1 / 2}+O\left(n^{-2}\right)\right]
$$

where

$$
\gamma=3, \quad \delta=\alpha+5 C-\psi(3 / 2) \quad(C=0.577216 \text { is Euler's constant })
$$

If the number a_{n} is finite, i.e., $a R$ is a root of the function $E_{k}(x)$ (in the first problem) or of the function $J_{k+1 / 2}(x)$ (in the second problem), then for increasing n the value S_{n} tends to zero

$$
\lim _{n \rightarrow \infty} S_{n}=0
$$

and this means that the value, beginning with some number, will have

$$
S_{n}<1-\varepsilon \quad \text { for } n \geqslant n_{0}
$$

i.e., the system (4.2) is quasi-completely regular.

It is easily seen that the free term of system (4.2) is bounded from above and as $n \rightarrow \infty$ tends to zero.

If, however, one of the numbers a_{n} becomes infinite (see footnote on p. 620) ($a_{n_{2}} \rightarrow \infty$), then it is necessary in system (2.6) and (3.5) to introduce new unknowns in the following manner:

$$
Z_{k}=X_{k} \quad \text { for } \quad n \neq n_{1}, \quad Z_{n_{t}}=\alpha_{n_{1}} X_{n_{1}}
$$

The infinite system for Z_{k} is also quasi-completely regular. It is easy to show that two of the numbers a_{n} may not simultaneously tend to infinity.

We note that from the solution of the problem considered here in the special case when $\omega \rightarrow 0(a \rightarrow 0)$, a solution is obtained corresponding to the statical case $[1,2]$, where incidentally, the regularity of the system obtained was not demonstrated.

BIBLIOGRAPHY

1. Babloian, A.A., Reshenie nekotorykh parnykh riadov. (Solution of certain dual series). Dokl. AN Am. SSR, 1964, Vol. 39, No. 3.
2. Arutiunian, N. Kh., Abramian, B.L., O vdavlivanii zhestkogo shtampa v upruguiu sfera. (The indentation of a rigid stamp in an elastic sphere). PMM Vol. 28, No. 6, pp. 11011105.
3. Lebedev, N.N., Spetsial'nye funktsii i ikh priloxheniia. (Special functions and their applications). Fizmatgiz, 1963.

[^0]: * We note that it was not proved that the system obtained for the corresponding statical problem was regular. Therefore the proof, which is developed in Section 4, is completely related also to the syatems considered in the papers [1, 2].

